Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5734, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059748

RESUMO

For those suffering from end-stage biventricular heart failure, and where a heart transplantation is not a viable option, a Total Artificial Heart (TAH) can be used as a bridge to transplant device. The Realheart TAH is a four-chamber artificial heart that uses a positive-displacement pumping technique mimicking the native heart to produce pulsatile flow governed by a pair of bileaflet mechanical heart valves. The aim of this work was to create a method for simulating haemodynamics in positive-displacement blood pumps, using computational fluid dynamics with fluid-structure interaction to eliminate the need for pre-existing in vitro valve motion data, and then use it to investigate the performance of the Realheart TAH across a range of operating conditions. The device was simulated in Ansys Fluent for five cycles at pumping rates of 60, 80, 100 and 120 bpm and at stroke lengths of 19, 21, 23 and 25 mm. The moving components of the device were discretised using an overset meshing approach, a novel blended weak-strong coupling algorithm was used between fluid and structural solvers, and a custom variable time stepping scheme was used to maximise computational efficiency and accuracy. A two-element Windkessel model approximated a physiological pressure response at the outlet. The transient outflow volume flow rate and pressure results were compared against in vitro experiments using a hybrid cardiovascular simulator and showed good agreement, with maximum root mean square errors of 15% and 5% for the flow rates and pressures respectively. Ventricular washout was simulated and showed an increase as cardiac output increased, with a maximum value of 89% after four cycles at 120 bpm 25 mm. Shear stress distribution over time was also measured, showing that no more than [Formula: see text]% of the total volume exceeded 150 Pa at a cardiac output of 7 L/min. This study showed this model to be both accurate and robust across a wide range of operating points, and will enable fast and effective future studies to be undertaken on current and future generations of the Realheart TAH.


Assuntos
Sistema Cardiovascular , Transplante de Coração , Coração Artificial , Hemodinâmica , Fluxo Pulsátil , Modelos Cardiovasculares , Desenho de Prótese
2.
Artif Organs ; 47(7): 1208-1213, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37032479

RESUMO

BACKGROUND: Hemolysis testing of new devices to treat heart failure is a regulatory requirement. The ASTM F1841-97 standard for hemolysis testing was developed for continuous flow pumps and does not specify test rig design. When research groups use different methodologies, results are difficult to compare. Pulsatile flow pump rigs require compliance chambers, and thus, the Aachen rig (Gräf et al) was developed for the pulsatile Reinheart TAH. The study objective was to use this rig to test the early Realheart TAH prototype V11C hemolysis performance compared to literature. METHODS: The experimental control was the continuous flow pump BPX-80 (Medtronic) and pooled heparinized porcine blood was used. RESULTS: The mgNIH of BPX-80 and V11C was 5.42 ± 1.47 and 25.20 ± 5.46 mg/100 L, respectively. The NIH ratio of V11C over BPX-80 was 5.5. CONCLUSION: The absolute and the relative hemolysis of the V11C are lower compared to both the large and small Reinheart TAH devices published values. Pulsatile pumps create more hemolysis in the Aachen rig, and it is not known if this is because how the rig handles pulsatile flow or due to the devices. Future studies will, therefore, use a pulsatile pump such as the SynCardia as clinical comparator and human blood to test the performance of future Realheart TAH prototypes.


Assuntos
Insuficiência Cardíaca , Coração Artificial , Coração Auxiliar , Animais , Suínos , Humanos , Hemólise , Fluxo Pulsátil , Coração Auxiliar/efeitos adversos
3.
Artif Organs ; 46(8): 1585-1596, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35231138

RESUMO

BACKGROUND: Heart failure is a growing health problem worldwide. Due to the lack of donor hearts there is a need for alternative therapies, such as total artificial hearts (TAHs). The aim of this study is to evaluate the hemodynamic performance of the Realheart® TAH, a new 4-chamber cardiac prosthesis device. METHODS: The Realheart® TAH was connected to a hybrid cardiovascular simulator with inflow connections at the left/right atrium, and outflow connections at the ascending aorta/pulmonary artery. The Realheart® TAH was tested at different pumping rates and stroke volumes. Different systemic resistances (20.0-16.7-13.3-10.0 Wood units), pulmonary resistances (6.7-3.3-1.7 Wood units), and pulmonary/systemic arterial compliances (1.4-0.6 ml/mm Hg) were simulated. Tests were also conducted in static conditions, by imposing predefined values of preload-afterload across the artificial ventricle. RESULTS: The Realheart® TAH allows the operator to finely tune the delivered flow by regulating the pumping rate and stroke volume of the artificial ventricles. For a systemic resistance of 16.7 Wood units, the TAH flow ranges from 2.7 ± 0.1 to 6.9 ± 0.1 L/min. For a pulmonary resistance of 3.3 Wood units, the TAH flow ranges from 3.1 ± 0.0 to 8.2 ± 0.3 L/min. The Realheart® TAH delivered a pulse pressure ranging between ~25 mm Hg and ~50 mm Hg for the tested conditions. CONCLUSIONS: The Realheart® TAH offers great flexibility to adjust the output flow and delivers good pressure pulsatility in the vessels. Low sensitivity of device flow to the pressure drop across it was identified and a new version is under development to counteract this.


Assuntos
Transplante de Coração , Coração Artificial , Átrios do Coração , Hemodinâmica , Humanos , Doadores de Tecidos
4.
Artif Organs ; 46(1): 57-70, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34460941

RESUMO

BACKGROUND: Patients with end-stage, biventricular heart failure, and for whom heart transplantation is not an option, may be given a Total Artificial Heart (TAH). The Realheart® is a novel TAH which pumps blood by mimicking the native heart with translation of an atrioventricular plane. The aim of this work was to create a strategy for using Computational Fluid Dynamics (CFD) to simulate haemodynamics in the Realheart®, including motion of the atrioventricular plane and valves. METHODS: The accuracies of four different computational methods for simulating fluid-structure interaction of the prosthetic valves were assessed by comparison of chamber pressures and flow rates with experimental measurements. The four strategies were: prescribed motion of valves opening and closing at the atrioventricular plane extrema; simulation of fluid-structure interaction of both valves; prescribed motion of the mitral valve with simulation of fluid-structure interaction of the aortic valve; motion of both valves prescribed from video analysis of experiments. RESULTS: The most accurate strategy (error in ventricular pressure of 6%, error in flow rate of 5%) used video-prescribed motion. With the Realheart operating at 80 bpm, the power consumption was 1.03 W, maximum shear stress was 15 Pa, and washout of the ventricle chamber after 4 cycles was 87%. CONCLUSIONS: This study, the first CFD analysis of this novel TAH, demonstrates that good agreement between computational and experimental data can be achieved. This method will therefore enable future optimisation of the geometry and motion of the Realheart®.


Assuntos
Coração Artificial , Hemodinâmica , Hidrodinâmica , Simulação por Computador , Desenho de Prótese , Estresse Mecânico
5.
Artif Organs ; 44(4): 384-393, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31596507

RESUMO

Realheart total artificial heart (TAH) is a novel, pulsatile, four-chamber total artificial heart which had been successfully tested acutely in a porcine animal model. However, the bovine model is better suited for long-term testing and thus an evaluation of how the design would fit the bovine anatomy was required. Virtual implantation is a method that enables a computer simulated implantation based on anatomical 3D-models created from computer tomography images. This method is used clinically, but not yet adopted for animal studies. Herein, we evaluated its suitability in the redesign of the outer dimensions and vessel connections of Realheart TAH to transition from the porcine to the bovine animal model. Virtual implantations in combination with bovine cadaver studies enabled a series of successful acute bovine implantations. Virtual implantations are a useful tool to replace the use of animals in early device development and refine subsequent necessary in vivo experiments. The next steps are to carry out human virtual implantations and cadaver studies to ensure the design is optimized for all stages of testing as well as the final recipient.


Assuntos
Alternativas ao Uso de Animais , Bovinos/cirurgia , Coração Artificial , Imageamento Tridimensional , Implantação de Prótese/métodos , Animais , Suínos
6.
Artif Organs ; 44(2): 174-177, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31339577

RESUMO

Heart failure affects >26 million patients worldwide. Current cardiac devices save lives, but patients suffer complications. Hence, improved devices are needed. Realheart TAH is a novel total artificial heart which has shown promising results in acute pig studies. However, the device design needed to be evaluated in humans. Virtual implantations demonstrated the device fits in two of three patients, but that there was some interference with the left lung. Herein, we used an innovative 3D-printed model with swivelling device components to test the device in human cadavers. Our new method demonstrated how to optimize design to improve the surgical fit.


Assuntos
Insuficiência Cardíaca/terapia , Coração Artificial , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Impressão Tridimensional , Implantação de Prótese/instrumentação , Idoso , Função Atrial , Cadáver , Feminino , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Teste de Materiais , Pessoa de Meia-Idade , Projetos Piloto , Desenho de Prótese , Implantação de Prótese/efeitos adversos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Função Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...